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abstract
The main objective of this technical report is to answer the questions re-
quired for the exam of Robot Control (9 cfu) held by Prof. Bruno Siciliano
and belonging to the Master’s Course in Automation Engineering.

The report starts from robot kinematics and arrives to advanced tech-
niques of motion planning, passing through motion and force control.

The topics that are presented in this report are: robot kinematics, manip-
ulability, path planning, manipulator redundancy, inverse kinematics, robot
dynamics, motion control, robust control, adaptive control, force control,
impedance control, force/position control, motion planning via artificial po-
tentials.
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1 introduction
This introduction is meant to give a rough overview on the whole report
and a small description of its protagonist.

Starting from the latter, in Fig. 1 “Oscar ’o scara”, a scara robot that
lives somewhere behind the Vesuvio, can be seen in one of the picture taken
from Ischia while it is performing a trajectory tracking task. This robot will
accompany us in our trip through robot control starting from Gragnano and
arriving to Marechiaro.

Figure 1: Oscar ’o scara

More in detail, this trip will make us explore the basics of Robotics step
by step, each of which is represented by a section of this report:

• Section 2: this first section deals with manipulability and dexterity
characteristics of the robot represented by the velocity, force and dy-
namics manipulability ellipsoids.

• Section 3: this second section gives a (panoramic) description of the
trajectory designed for the robot.

• Section 4: this section is the most important section since it will present
the methods that can be used to solve the inverse kinematics problem
in Robotics.

• Section 5: in this section a further step is done considering the robot
redundancy and trying to exploiting it in the kinematics inversion.

• Sections 6 and 7: from here on, the dynamics of the robot is taken into
consideration and two different techniques used for motion control
will be presented right in these two sections.

• Section 8: this section is dedicated to the force control and, in its sub-
section, 4 force control strategies are explained respectively.

• Section 9: in this last section, that goes a little bit beyond the classic
robot control, maybe the most elegant motion planning technique used
in Robotics will be presented.

Furthermore, 2 appendices at the end have been used not to include too
many formulas in the main part of the report and to explain more in detail
some of the functions used in this project. In particular:
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• Appendix A: here the kinematics and dynamics characteristics of Os-
car ’o scara are reported.

• Appendix B: this section is meant to explain in a clearer way how some
features of the the trajectory planning function work.

Finally, attached to this PDF report, there are:

• all the files .m (quite) extensively commented and organized in folders,

• the published PDFs of the scripts used to generate the graphs and the
videos which are part of this report,

• the html Scara class reference created for this project using MathWorks R©

Matlab.

Before closing this brief introduction, the author would like to excuse for
some text or digits which can be present in some figures or videos that, even
though they could be irrelevant, are unreadable.

Moreover, throughout this work, vectors and matrices are denoted by
lower and upper case bold letters.

2 right velocities and right forces at the
right angle

Before going into the details of the manipulability measures that can be
used to check the dexterity of a robot, a very interesting and meaningful
technique used in matrix analysis is wanted to be introduced.

2.1 From A Symmetric Positive Definite Matrix To The Hyperellipsoid

“Simmetrica e definita positiva: queste sono due delle proprietà più
nobili che una matrice possa avere.”

L. Rosati

If a matrix A is positive definite and symmetric, the quadratic form q(x)
associated with it has a special property: the points satisfying the equation
q(x) = 0 belongs to the surface of a hyperellipsoid.

In the 2-dimensional case, defining the homogeneous coordinate vector

x = [x,y, 1]T

and the matrix

A =

A B
2

D
2

B
2 C E

2
D
2

E
2 F

 ,

we would have

q(x) = xTAx = Ax2 +Bxy+Cy2 +Dx+ Ey+ F = 0

which, if A is positive definite, is the equation of an ellipse.
This concept, extended to higher-dimensional spaces, can be applied to

particular symmetric and positive definite matrices related to the kinematics
and the dynamics of a robot.
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Indicating with J the Jacobian of the robot and with B its inertia matrix,
the three matrices [SSVO09]

Mv = (JJT)−1

Mf = M−1
v

Md = JTBTBJ

are associated with three particular quadratic forms representing the

• velocity ellipsoid
• force ellipsoid
• dynamics manipulability ellipsoid.

The length of the semiaxes of these ellipsoids are equal to the singular
values1 of the corresponding matrices. Therefore, it can be said that the
velocity and force ellipsoids are orthogonal, i. e. the semiaxes are in inverse
ratios between each other. The following theorem, together with the figures
of Subsection 2.2, will clarify this concept.

Theorem 1. If a matrix A is the inverse of B, the eigenvalues of A are the reciprocal
numbers of the eigenvalues of B.

Proof. The theorem can be easily demonstrated exploiting the eigendecom-
position of the matrices A and B.

In fact, according to the spectral theorem

A = VΛVT = V



λ1
λ2 0

. . .

0
. . .

λn

VT,

where V is an orthonormal matrix, i. e. V−1 = VT

Hence

B = A−1 = (VΛVT)−1 = V-TΛ−1V-1

= V



1
λ1

1
λ2

0

. . .

0
. . .

1
λn


VT.

(1)

As we can see from Equation (1), the first eigenvalue of B is the reciprocal
number of the first eigenvalue of A and so on.

Since, as said before, the absolute values of the eigenvalues are the lengths
of the semiaxes, it can be said that the ellipsoids corresponding to the ma-
trices A and B are orthogonal to each other.

1 In this case, since the matrices are symmetric, their singular values are equal to the absolute
value of their eigenvalues, which are all real.
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2.2 Manipulability Ellipsoids

In Fig. 2 and Fig. 3 the velocity (red) and force (green) ellipsoids are depicted
for 7 positions of the robot end-effector. Here the orthogonality between
the two ellipsoids (associated with the matrices Mv and Mf) can be fully
appreciated.

Figure 2: Velocity, force and dynamics manipulability ellipsoids

In particular, from Fig. 3, it can be noticed that the top view of the scara

manipulability ellipsoids are, on a quality level, equal to those related to the
two-link planar arm.

Figure 3: Velocity, force and dynamics manipulability ellipsoids (top view)
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Furthermore, in the two limiting cases, in which the robot is either out-
stretched or retracted, the two ellipsoids degenerate into a circle and a seg-
ment orthogonal to it (see Fig. 2).

Finally, the two videos that close this section show the transformation of
the two above-mentioned ellipsoids and the dynamics manipulability ellip-
soid while the robot is moving in its workspace.

Video: Transformation of the ellipsoids while the scara moves in its workspace

Video: Transformation of the ellipsoids while the scara moves in its workspace (top
view)

3 stairway to the stars
“Stairway To The
Stars” is a popular
jazz standard
composed by Matty
Malneck and Frank
Signorelli in 1926.

Fig. 4 shows the path planned to test both the trajectory planning function
and the adopted control schemes.

The trajectory is characterized by values of Tables 1 and 3. In the former,
the points are described by the 3 components of the position vectors, ex-
pressed in the base reference frame of the robot, and by the timing informa-
tion, given in the first column. The third and the fourth column are needed


ellissoidiASpasso.avi
Media File (video/avi)


ellissoidiASpasso(topView).avi
Media File (video/avi)
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Figure 4: Trajectory planning

to distinguish the type of points, of which the path is made up, i. e. path or
via points. In case of via points, in the fourth column there is the advance
(expressed in percentage of the duration of the path segment that starts from
that via point) used to anticipate the generation of the trapezoidal profile of
the path segment that starts from that via point. The last two columns give
the orientation of the robot end-effector using the angle/axis representation,
where the axis z0 is the z-axis of the base reference frame of the robot.

Table 1: Path Description

Time
Point Orientation

Coordinates
Types Advance Axis

Angle
[s] [x,y, z] [rad]

0
[
0.8√
2
+ 1
5 , 0.8√

2
, 1325

]
path − z0 0

5
[
1
2
√
2
+ 1
5 , 1
2
√
2

, 12
]

path − z0
π
4

8
[
7
10 , 0, 12

]
path − z0

π
3

12
[
9
20 , 0, 1320

]
via 30% z0

π
6

16
[
8
25 , 0, 3150

]
via 30% z0 0

19
[
1
5 , 0, 12

]
path − z0

π
2

22
[
1
2 +

1
5 , 0, 12

]
via 50% z0

π
2

24
[
1
2 ,− 1

10 , 12
]

path − z0
π
3

27
[
11
20 ,−25 , 12

]
via 20% z0 0

30
[
3
4 cos

(
8
10
π
2

)
+ 1
2 ,−34 sin

(
8
10
π
2

)
+ 1
5 , 51100

]
path − z0 0

The characteristics of the path segments are described in Table 3. Here
there is the segment ID, the segment curvature and its speed profile. The
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curvature values can assume the values reported in Table 2 with the corre-
sponding meanings.

Table 2: Segment Curvatures

Curvature value Meaning

−1 spline
0 rectilinear path
1
ρ

* circular path
*ρ is the radius of the circumference of the circular path

Table 3: Pieces Of Trajectory

#
Curvature Speed Profile

Value Properties

1 −1 −

2 −1 −

3 0 −

4
1
0.08 z0

5 0 −

6 −1 −

7 −1 −

8
1
0.18 z0

9
1
0.12 z0

The Properties of the curvature are set, only in correspondence of circular
paths, to the unit vector describing the plane in which the circumference
will be planned.

The Speed Profile column of the table depicts the speed profile assigned
to each segment. In case of via points, the red dotted profile is obtained
anticipating the generation of the profile. The amount of advance can be
read in Table 1.

Moreover, from an implementation point of view, the inputs needed to
generate the speed profile are:

• the percentage of the acceleration phase
• the percentage of the deceleration phase.

Starting from this information the acceleration, deceleration and maxi-
mum speed values are calculated.

Finally, the video that closes this section shows the path in a moving
bird’s-eye view. From that panoramic view it can be appreciated the trip
starting in Gragnano and reaching Marechiaro passing through the Vesuvio,
Monte Somma and Castel dell’Ovo.
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Video: Presentation of the trajectory with POIs

4 shall we go back with diego?
Did you know that
the etymological
evolution of the
Spanish name Diego
shows that it may be
originated from Jacob,
the name of the
Hebrew patriarch?

This section shows the results of the inverse kinematics algorithms tested to
evaluate the joint variable functions needed to track the trajectory formerly
planned.

The techniques tested here exploit the power that a feedback loop has in
reference tracking tasks. In fact, inverting the basic differential kinematic
equation [SSVO09]

ve = J(q)q̇, (2)

where ve is the end-effector velocity, J is the robot Jacobian and q is the
joint variable vector, one gets

q̇ = J−1(q)ve. (3)

A mere integration of Eq. (3) would lead inevitably to drift of the q(t)
function.

That’s why the inverse kinematics is performed by the aid of closed loop
schemes based on the robot Jacobian inverse and transpose, and considering
both the tracking error and its derivative.

A prior distinction can be done between offline and online inverse kine-
matics algorithms. An offline algorithm assures a very small error for every
point of the trajectory at the price of bigger computational efforts. Whereas
an online algorithm is much faster, but it shows an initial bigger error that
goes down along the trajectory.

The use of closed-loop schemes leads to the following choices of joint
velocities [SSVO09]:

q̇ = J-1(q)
(
ẋd + Ke

)
Jacobian inverse (4)

q̇ = JT(q)Ke Jacobian transpose (5)

q̇ = J†(q)
(
ẋd + Ke

)
+
(
I − J†(q)J(q)

)
q̇0 Jacobian pseudo-inverse (6)

q̈ = J†(q)
(
ẍd + KDė + KPe − J̇(q, q̇)

)
+
(
I − J†(q)J(q)

)
q̈0 2nd-order Jacobian pseudo-inverse, (7)


fromGragnanotoMarechiaro.avi
Media File (video/avi)
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where the tracking error and its derivative are denoted by e and ė.
The key of a closed loop is, as usual, the value of the loop gains (K, KP and

KD in Equations from (4) to (7)). Fig. 5a and Fig. 5b show how increasing
the loop gain can bring the system (in this case the numerical integration)
close to instability. In Figures 5 the operational space trajectory obtained
using the output of the closed loop numerical integration (algorithm based
on Eq. (5)) is plotted on the desired trajectory to track. The amplitude of the
initial oscillations is very large even though the system manages to converge
to the desired trajectory.

(a) Algorithm close to instability (b) Algorithm close to instability (close-up)

Figure 5: Jacobian transpose clik with too large gains

4.1 ’O Sparagno Nun È Maje Guadagno

In the Fig. 6a (close-up in Fig. 6b) there are the position error functions
related to the Jacobian inverse and Jacobian transpose clik algorithms re-
spectively. Whereas the Fig. 7 shows a comparison between the orientation
errors coming from the same two algorithms.

In both cases, position and orientation errors, the clik based on the Ja-
cobian inverse performs better. The drawback is a higher computational
effort due to the inversion of a matrix at every step of the algorithm. The
clik based on the Jacobian transpose, on the other hand, is computationally
lighter but less precise.

4.2 Double clik To Close The Loop

An even more precise clik algorithm can be achieved using a second-order
algorithm [Sic90]. The operational space acceleration and the derivative of
the tracking error come into play allowing an even finer tuning of the control
loop and, therefore, a better behavior in reference tracking. Here, in fact,
both KD and KP can be assigned to reach the desired transient and tracking
behavior.

In Fig. 8a and Fig. 8b the overshoot typical of a second-order system can
be observed, while in Fig. 9a and Fig. 9b the loop gains have been tuned to
obtain two coincident poles of the controlled system. This way, the error goes
exponentially to zero without overshoot and with a well-damped behavior.

To close this section a final consideration has to be done. Since for robots
with a large number of degrees of freedom the inverse kinematics takes a
considerable amount of time, lots of alternative solutions to this problem
have been worked out. Among these, just a mention should be done to
those based on fuzzy logic [XN93] and on neural networks. The latter is
used successfully in advanced application such as the motion control of
flexible manipulators in microgravity environments [CL92].
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(a) Position errors

t [s]

0 5 10 15 20 25 30

P
o
s
it
io

n
 e

rr
o
r 

[m
]

×10
-4

0

0.2

0.4

0.6

0.8

1

CLIK with Jacobian Inverse

CLIK with Jacobian Transpose

(b) Position errors (close-up)

Figure 6: Comparison between operational space position errors obtained using two
clik algorithms based on the Jacobian inverse and the Jacobian transpose
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Figure 7: Comparison between operational space orientation errors obtained using
two clik algorithms based on the Jacobian inverse and the Jacobian trans-
pose

5 leap into the void
This section shows how manipulator redundancy can be exploited in the in-
verse kinematics algorithms. In Equations 6 and 7 the terms

(
I− J†(q)J(q)

)
q̇0
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(a) Gain set-up to get overshoot in the
second-order behavior

(b) Gain set-up to get overshoot in the
second-order behavior (close-up)

Figure 8: Overshoot in second-order clik algorithms

(a) Gain set-up to get the critical damping
in the second-order behavior

(b) Gain set-up to get the critical damping
in the second-order behavior (close-up)

Figure 9: Critical damping in second-order clik algorithms

and
(
I− J†(q)J(q)

)
q̈0 generate additional internal motions that don’t cause a

movement of the robot end-effector, being
(
I− J†(q)J(q) ∈ N(J) and remem-

bering Eq. (2).
The choice of the values of q̇0 and q̈0 allows a convenient utilization of

the redundant degrees of freedom.
In the presented case, it has been decided to maximize the robot manipu-

lability forcing the scara robot to be redundant w.r.t. the orientation of its
end-effector, renouncing to control the last joint in order to keep the trajec-
tory as close as possible to the planned one.

Making use of a 1st -order algorithm, the value of q̇0 has been calculated
according to the following equation [SSVO09]:

q̇0 = k0

(
∂w(q)
∂q

)T
,

where

w(q) =
√

det
(
J(q)JT(q)

)
is a manipulability measure.
In Fig. 10 another manipulability function (the ratio between the smallest

and the largest singular value of the manipulator Jacobian) is plotted along
the trajectory. It turns out to be the same before and after maximizing the
manipulability since for the considered robot architecture the manipulability
is function of the second joint variable (the angle between the first and the
second link). On the other hand, with this technique the last joint is not
actuated and therefore the frames attached to the third and the fourth link
always coincide.
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Figure 10: Manipulability measure function (ratio between the smallest and the
largest singular value obtained by the svd of the Jacobian)

6 can you keep the equilibrium on a slid-
ing plane?

With this section the study of the control strategies for robot manipulators
begins. So far only the kinematic control has been considered, while from
now on the robot dynamics comes into play too.

Finding the joint torques that make the robot follow the given path with
the given velocities and accelerations means finding the right matrix that
is able to rotate the force vector applied to the robot end-effector onto the
desired acceleration vector.

The first two strategies (Section 6 and Section 7) are meant to reject special
kinds of disturbances that can occur while operating with the robot. In
particular an unknown mass of 4 Kg has been hung at the manipulator end-
effector. The two considered control schemes are two kinds of centralized
control:

• robust control

• adaptive control.

The first one is presented in this section while the next section is dedicated
to the second one.

The robust control comes into play whenever the robot dynamic model
is not 100% known. It allows to catch up on the imperfect compensation
coming from an inverse dynamics control implemented with the wrong dy-
namic parameters. The control scheme can be actually divided into three
main parts:

• nonlinear compensation and decoupling

• stabilizing linear control

• unit vector control.

The first two parts are in common with the well-known inverse dynamics
control scheme, while the third one takes care of counteracting the uncer-
tainty in the knowledge of the robot dynamics.

The choice of the parameters of the unit vector control can assure robust-
ness as well as both stability and good performances of the control loop,
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attracting the error towards a sliding subspace of the tracking error state
space, to which the error and its derivative are confined.

In Figures 11 it can be appreciated how the unit vector control action can
limit, with two different behaviors, the magnitude of the error to small val-
ues. To simulate the uncertainty in the robot dynamic model, the B and C
matrices of the dynamic model used for the nonlinear compensation have
been set to be diagonal, neglecting the off-diagonal entries. In Fig. 11a the
value of the ε parameter of the robust control law is set to a big value: this
leads to a control action that contains high-frequency components (chatter-
ing), but also to a better reference tracking, since it is able to bring the error
to 0. In Fig. 11b, instead, the value of ε has been reduced and the chattering
disappears. The error norm is bounded but it never goes to 0.

(a) Close-up on the trajectory (big ε) (b) Close-up on the trajectory (small ε elim-
inates the typical chattering behavior
due to high-frequency components in
the control action)

Figure 11: Comparison between the behaviors of the controlled trajectory using a
unit vector control law with different values of the ε parameter

In Fig. 12a and Fig. 12b the joint torques related to the two above-described
alternatives of the unit vector control are reported as functions of time. Also
here it is possible to see how the high-frequency in the commutation of the
control action generates smoother reference torques for the servos, which
are in reality incapable to follow them.

To close this section there is a video showing Oscar ’o scara tracking the
planned trajectory by using a robust control. The color of the joints goes
from green to red proportionally to joint torque exerted by the joint motor.

7 y must you adapt all the π recipes?!
The title of this
section is clearly,
explicitly and no
doubt dedicated to
my mother.
She already knows!

The adaptive control allows an on-line adaptation of the dynamics param-
eters used to compensate the nonlinearities of the system to control. This
is achieved exploiting the linearity of the dynamic model w.r.t the dynamic
parameters.

The Eq. (8) sums up the adaptive control law, while the Eq. (9) gives the
parameter adaptive law [SSVO09].

u = Y(q, q̇, q̇r, q̈r)π̂

inverse dynamics compensation

+ KDσ

PD linear control

(8)

˙̂π = K−1
π YTσ (9)

In these equations

• Y is the regressor,
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(b) Joint torques (with small ε the chattering is also visible in the joint torque functions)

Figure 12: Comparison between the behavior of the joint torques using a unit vector
control law with different values of the ε parameter

Video: scara controlled adopting a robust control law

• π̂ is the vector of the estimated parameters,

• KD is the derivative gain matrix,


robustControl(speeded-up).avi
Media File (video/avi)
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• σ is the joint velocity error vector,

• Kπ is the gain matrix that has to be tuned in order to control the
behavior of the convergence of the dynamic parameters.

The Figures 13 show two solutions of the parameter adaptation that comes
from two different choices of the matrix Kπ . In Fig. 13a the gain matrix
is set to be diagonal and the resulting adaptation process is handed-out to
more parameters. Whereas in Fig. 13b the entries of Kπ have been chosen
so that the unknown mass hung to the robot end-effector will make only
one dynamic parameter change, namely the mass of the last link, which, of
course, converges to 4 Kg.
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(a) Parameter adaptation diagram obtained using a gain matrix Kπ with all eigenvalues equal
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(b) Parameter adaptation diagram obtained using different gains for each parameter in order to
simulate the estimation process of the single mass of the last link

Figure 13: Adaptation of dynamics parameters

In Fig. 14a and in particular in Fig. 14b the trajectory that the robot follows
under an adaptive control law is plotted in red. It can be observed how at
the beginning, when the estimations of the dynamic parameters are wrong,
there is a certain position error in the z0 direction; the more the time goes
on, the better the parameter estimation is, and the tracking error decreases
to 0.
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(a) Controlled trajectory obtained using an
adaptive control strategy

(b) Controlled trajectory obtained using an
adaptive control strategy (close-up on
the starting phase while the parameters
are being adapted)

Figure 14: Trajectory resulting by the use of an adaptive control law

8 may the force be with you
This line has been
said at least once in
each of the “Star
Wars” movies, which
are probably the most
famous movies whose
main characters are
robots.

This section is dedicated to the study of force control and its different appli-
cations.

In the next subsection an indirect force control is taken into consideration,
while in Subsections 8.2, 8.3 and 8.4 the results of 3 direct methods to control
force are reported.

8.1 Impedance Control

The impedance control is an indirect force control method since there is
not an explicit force reference to which the control system tries to converge.
Instead, the end-effector force comes only from the interaction between the
robot and the environment.

In order to make a force rise, an elastically compliant plane has been
inserted to try to impede the robot movements.

In Fig. 15a the absolute value of the contact force between the robot end-
effector and the plane is plotted against the time. In Fig. 15b, that shows only
the first 3 seconds, the transient behavior can be observed. This behavior
depends on the choice of the control parameters that build-up the control
action of Eq. (11) [SSVO09].

u = B(q)y + n(q, q̇) + JT(q)he (10)

y = J−1(q)M−1
d

(
Mdẍd + KD ˙̃x + KPx̃ − MdJ̇(q, q̇)q̇ − hA

)
(11)

With Md, KD and KP the damping and the overshoot (i. e. rise time and
settling time) of the second-order system by which the robot is approxi-
mated can be set.

The video on Page 20 shows Oscar ’o scara following the trajectory under
an impedance control. The obstacle plane is shown in transparency, the
contact force is plotted and the joints torques are depicted as in the video
on Page 17. In the video the second order behavior has been intentionally
emphasized properly tuning the inertia, stiffness and damping matrices of
the controlled system.
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(a) Contact force calculated using an impedance control
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(b) Contact force calculated using an impedance control (close-up on the first 3 seconds)

Figure 15: Contact force between the scara end-effector and an obstacle plane
placed in the workspace

Video: scara movement obtained by using an impedance control

8.2 Force Control With Inner Position Loop

To achieve a direct force control, the control laws reported in this section
and in the next two could be used.


impedanceControl.avi
Media File (video/avi)
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A first solution consists in considering a cascade control scheme in which
the outer loop takes the force as a reference and gives the reference for the
inner position loop. The control law corresponding to this strategy is as in
Eq. (10) but the vector y is given by Eq. (12). The closing of the force loop is
assured by Eq. (13) [SSVO09].

y = J−1(q)M−1
d

(
KDẋe + KP(xF − xe) − MdJ̇(q, q̇)q̇

)
(12)

xF = CF(fd − fe) (13)

The Fig. 16 (zoom to the first 2 seconds in Fig. 16b) shows the reference
force along the z0 axis (set to 40 N) and the actual end-effector force. This
transient behavior, as well as the astatism, have been achieved by using and
tuning the transfer function of a PI controller in place of the CF of Eq. 13.

t [s]

0 5 10 15 20 25 30

F
 [
N

]

-100

-50

0

50

100

Force Reference

End-Effector Force

(a) End-effector force with the reference value

t [s]

0 0.5 1 1.5 2

F
 [
N

]

-100

-50

0

50

100

Force Reference

End-Effector Force

(b) End-effector force with the reference value (close-up on the first 2 seconds)

Figure 16: Force control with inner position loop

8.3 Force Control With Inner Velocity Loop

An easier control scheme can be obtained if one considers the same force
control of Subsection 8.2 but with an inner velocity loop. The control input
is as in Eq. (10), the vector y changes to Eq. (14) [SSVO09].

y = J−1(q)M−1
d

(
− KDẋe + KPxF − MdJ̇(q, q̇)q̇

)
(14)
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In this case, in fact, both the astatism and a good transient behavior, can
be achieved by using a simple P controller in place of CF.

From Fig. 17a and Fig. 17b it can be easily noticed that there is almost
no difference between the transient of the end-effector force of Fig. 16a and
Fig. 16b.
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(a) End-effector force with the reference value
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(b) End-effector force with the reference value (close-up on the first 2 seconds)

Figure 17: Force control with inner velocity loop

8.4 Parallel Force/Position Control

Since in the previous two control laws the position reference does not ap-
pear explicitly, if the desired force has zero components along certain opera-
tional space directions (i. e. fd 6∈ R(CF)), the position reference generated by
the outer force loop gives an end-effector velocity reference that will cause
inevitably a drift of the end-effector position2.

If it is desired to control both the end-effector force and its position, the
control action given by Eq. (15) can be used [SSVO09].

2 In the considered case, in fact, since the force reference vector is fd = [0,0,40] N, only the z
component of the planned path is tracked. The x and y are 0 and the robot stands still almost
right above the initial position, at the height at which the force equilibrium is fulfilled.
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y = J−1(q)M−1
d

(
− KDẋe + KP(x̃ + xF) − MdJ̇(q, q̇)q̇

)
(15)

x̃ = xd − xe (16)

The position error of Eq. (16) is typical of pure position control schemes.
Also for this case, Fig. 18a and Fig. 18b show the end-effector force, always

along z axis, together with its reference value.
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(b) End-effector force with the reference value (close-up on the first 2 seconds)

Figure 18: Parallel Force/Position Control

The Fig. 19, furthermore, shows the position of the end-effector under the
parallel force/position control.

9 tribute to oussama
This section, that goes beyond the classic robot control, deals with the mo-
tion planning technique that makes use of artificial potentials.

The 3 videos of Page 25 show Oscar ’o scara moving in its workspace
guided (pushed or pulled) by a force applied to its end-effector proportional
to the gradient of a particular potential function. Both the shape and the
position of Gaussian attractive and repulsive potentials have been changed
in order to make the robot perform different slaloms passing very close or
even through its arm singularities.
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Figure 19: Trajectory executed by the scara controlled via a parallel force/position
control strategy

Also the effect of local minima has been tested trying to attract the robot
end-effector to a force equilibrium point.

Another funny application has been developed to interact with Oscar ’o
scara while it is moving towards lower potentials. This application consists
in controlling the position of the attractive potential (which determines the
position of the goal) by means of the gyro sensor of a mobile phone. The
video on Page 26 shows the author of this report playing with the robot.
As can be noticed, compared to the previous videos, no damping force
has been introduced not to make the robot slowing down while approach-
ing the goal, but instead to reproduce exactly the behavior of a nonlinear
mass-spring system. Again here, it has been tried to make the robot pass
through its kinematics singularities to observe the effects coming from the
bad-conditioned Jacobian and the improvements that can be achieved using
the damped least-squares (dls) Jacobian inverse.

10 conclusion
To conclude this report some further developments and future scopes to
keep on improving this project are mentioned below:

1. improve the Matlab functions written to perform simulations

2. translate the improved Matlab functions in C++ in order to use them
on a real system

3. develop a small application to play with the robot tip to test directly
the influence impedance control parameters

4. integrate the functions developed during the course of fem in Non-
linear Structural Analysis to study the problem of controlling flexible
manipulators
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(a) First configuration of obstacles

(b) Second configuration of obstacles

(c) Third configuration of obstacles

Video: Trajectory planning using artificial potentials


PlanningViaPotentialsSlalom1.avi
Media File (video/avi)


PlanningViaPotentialsSlalom2.avi
Media File (video/avi)


PlanningViaPotentialsSingularity.avi
Media File (video/avi)
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Video: Oscar ’o scara chasing the goal

5. build a quadcopter with a smaller version of Oscar ’o scara mounted
upside-down right below it3 and use it to test higher-level algorithms
developed during other projects and in the free time

The author hopes you enjoyed the trip and . . . don’t miss the next one:

“From Marechiaro to Stanford”.

3 The production of the mechanical components of the robot will be done using a cnc, which
right now is in the design phase.


ilovejava.avi
Media File (video/avi)
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a scara robot kinematics and dynamics char-
acteristics

a.1 dh Parameters

According to the Denavit-Hartenberg convention, the considered DH pa-
rameters have been reported in the following table (units of measurement
in meters and radians):

Table 4: dh parameters for the scara

Link ai αi di ϑi

1 0.5 0 0 ϑ1
2 0.5 0 0 ϑ2
3 0 0 d3 0

4 0 0 0 ϑ4

a.2 Geometric Jacobian

Defining the vector q = [ϑ1, ϑ2,d3, ϑ4]T the geometric Jacobian, used through-
out this work starting from the kinematics till the control strategies simula-
tions, can be written as follows:

J(q) =



−a1sin(ϑ1) − a2sin(ϑ1 + ϑ2) −a2sin(ϑ1 + ϑ2) 0 0

a1cos(ϑ1) + a2cos(ϑ1 + ϑ2) a2cos(ϑ1 + ϑ2) 0 0

0 0 1 0

0 0 0 0

0 0 0 0

1 1 0 1

 . (17)

a.3 Inertia, Centrifugal-Coriolis and Gravity Matrices

In this subsection the matrices needed for the simulation of the robot dy-
namics are reported.

The inertia matrix, which multiplied by the joint variable accelerations
gives the inertial generalized forces, is:

B(q) =


b11 b12 b13 b14
b21 b22 b23 b24
b31 b32 b33 b34
b41 b42 b43 b44

 , (18)
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whose non-zero components are reported below:

b11 = Il1 + Il2 + Il3 + Il4 + Im2 + Im3 + Im4 + Im1k
2
r1

+ml1l
2
1

+ml2a
2
1 +ml2l

2
2 +ml3a

2
1 +ml3a

2
2 +ml4a

2
1 +ml4a

2
2

+mm2a
2
1 +mm3a

2
1 +mm4a

2
1

+ 2
(
ml2l2 + (ml3 +ml4)a2

)
a1 cos(ϑ2)

b12 = Il2 + Il3 + Il4 + Im3 + Im4 + Im2kr2

+ml2l
2
2 +ml3a

2
2 +ml4a

2
2 +mm3a

2
1 +mm4a

2
1

+
(
ml2l2 + (ml3 +ml4 +mm3 +mm4)a2

)
a1 cos(ϑ2)

b13 = Im3kr3

b14 = Il4 + Im4kr4

b21 = Il2 + Il3 + Il4 + Im3 + Im4 + Im2kr2

+ml2l
2
2 +ml3a

2
2 +ml4a

2
2 +mm3a

2
1 +mm4a

2
1

+
(
ml2l2 + (ml3 +ml4 +mm3 +mm4)a2

)
a1 cos(ϑ2)

b22 = Il2 + Il3 + Il4 + Im3 + Im4 + Im2k
2
r2

+ml2l
2
2 +ml3a

2
2 +ml4a

2
2 +mm3a

2
1 +mm3a

2
2

+mm4a
2
1 +mm4a

2
2 + 2(mm3 +mm4)a1a2 cos(ϑ2)

b23 = Im3kr3

b24 = Il4 + Im4kr4

b31 = Im3kr3

b32 = Im3kr3

b33 = Im3k
2
r3

+ml3 +ml4 +mm3 +mm4

b41 = Il4 + Im4kr4

b42 = Il4 + Im4kr4

b44 = Il4 + Im4k
2
r4

.

(19)

The C matrix that multiplies the joint velocities and contains both the
centrifugal and the Coriolis effects is:

C(q, q̇) =


c11 c12 c13 c14
c21 c22 c23 c24
c31 c32 c33 c34
c41 c42 c43 c44

 , (20)

whose components have been calculated starting from the Christoffel symbols
of the first type and whose non-zero components are reported below:

c11 = −
(
ml2l2 + (ml3 +ml4)a2

)
a1 sin(ϑ2)ϑ̇2

c12 = −
(
ml2l2 + (ml3 +ml4)a2

)
a1 sin(ϑ2)ϑ̇1

−
(
ml2l2 + (ml3 +ml4 +mm3 +mm4)a2

)
a1 sin(ϑ2)ϑ̇2

c21 =
(
ml2l2 + (ml3 +ml4)a2

)
a1 sin(ϑ2)ϑ̇1

c22 = −(mm3 +mm4)a1a2 sin(ϑ2)ϑ̇2

(21)

g(q) = [0, 0, (ml3 +mm3 +ml4 +mm4)g, 0]T, (22)

where the scalar g is the absolute value of the gravity acceleration.
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a.4 Regressor matrix

Defining the vector of dynamics parameters

π = [ml1 ,ml2 ,ml3 ,ml4 ,ml1l1,ml2l2,ml3l3,ml4l4,

Il1 +ml1l
2
1, Il2 +ml2l

2
2, Il3 , Il4 ,mm1 ,mm2 ,mm3 ,mm4 ,

Im1 , Im2 , Im3 , Im4 ]
T,

(23)

the regressor matrix Y(q, q̇), used to obtain an adaptive control law exploit-
ing the linearity of the dynamic model w.r.t. the dynamics parameters π, is
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a 4×20−matrix whose non-zero components from y1,1 to y4,20 are reported
below:

y1,2 = a21ϑ̈1

y1,3 = (a21 + a
2
2)ϑ̈1 + a

2
2ϑ̈2 + a1a2(2ϑ̈1 + ϑ̈2) cos(ϑ2)

− a1a2ϑ̇2(2ϑ̇1 + ϑ̇2) sin(ϑ2)

y1,4 = (a21 + a
2
2)ϑ̈1 + a

2
2ϑ̈2 + a1a2(2ϑ̈1 + ϑ̈2) cos(ϑ2)

− a1a2ϑ̇2(2ϑ̇2 + ϑ̇2) sin(ϑ2)

y1,6 = a1(2ϑ̈1 + ϑ̈2) cos(ϑ2) − a1ϑ̇2(2ϑ̇1 + ϑ̇2) sin(ϑ2)

y1,9 = ϑ̈1

y1,10 = ϑ̈1 + ϑ̈2

y1,11 = ϑ̈1 + ϑ̈2

y1,12 = ϑ̈1 + ϑ̈2 + ϑ̈4

y1,14 = a21ϑ̈1

y1,15 = a21(ϑ̈1 + ϑ̈2) + a1a2ϑ̈2 cos(ϑ2) − a1a2ϑ̇22 sin(ϑ2)

y1,16 = a21(ϑ̈1 + ϑ̈2) + a1a2ϑ̈2 cos(ϑ2) − a1a2ϑ̇22 sin(ϑ2)

y1,17 = k2r1 ϑ̈1

y1,18 = ϑ̈1 + k
2
r2
ϑ̈2

y1,19 = ϑ̈1 + ϑ̈2 + k
2
r3
d̈3

y1,20 = ϑ̈1 + ϑ̈2 + k
2
r4
ϑ̈4

y2,3 = a22(ϑ̈1 + ϑ̈2) + a1a2ϑ̈1 cos(ϑ2) + a1a2ϑ̇21 sin(ϑ2)

y2,4 = a22(ϑ̈1 + ϑ̈2) + a1a2ϑ̈1 cos(ϑ2) + a1a2ϑ̇21 sin(ϑ2)

y2,6 = a1ϑ̈1 cos(ϑ2) + a1ϑ̇21 sin(ϑ2)

y2,10 = ϑ̈1 + ϑ̈2

y2,11 = ϑ̈1 + ϑ̈2

y2,12 = ϑ̈1 + ϑ̈2 + ϑ̈4

y2,15 = a21(ϑ̈1 + ϑ̈2) + a
2
2ϑ̈2 + a1a2(ϑ̈1 + 2ϑ̈2) cos(ϑ2)

− a1a2ϑ̇
2
2 sin(ϑ2)

y2,16 = a21(ϑ̈1 + ϑ̈2) + a
2
2ϑ̈2 + a1a2(ϑ̈1 + 2ϑ̈2) cos(ϑ2)

− a1a2ϑ̇
2
2 sin(ϑ2)

y2,18 = kr2 ϑ̈1 + k
2
r2
ϑ̈2

y2,19 = ϑ̈1 + ϑ̈2 + kr3 d̈3

y2,20 = ϑ̈1 + ϑ̈2 + kr4 ϑ̈4

y3,3 = g+ d̈3

y3,4 = g+ d̈3

y3,15 = g+ d̈3

y3,16 = g+ d̈3

y3,19 = k2r3 d̈3 + kr3(ϑ̈1 + ϑ̈2)

y4,12 = ϑ̈1 + ϑ̈2 + ϑ̈4

y4,20 = kr4(ϑ̈1 + ϑ̈2) + k
2
r4
ϑ̈4

. (24)
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b trajectory planning function
The trajectory planning function that has been developed during this project
takes as inputs:

1. the timing vector containing the time instants at which a point has to
be reached

2. the coordinates and the type of the points building-up the trajectory
(see Table 1)

3. the orientations that the end-effector has to have at the given time
instants

4. the curvature and the velocity profile of the trajectory segment (see
Table 2).

For a circular path also the plane on which the circumference has to be
drawn should be specified. If this is not done, the plane is considered to be
the one to which 3 particular points belong:

• the initial point of the segment

• the final point of the segment

• the point that is in the middle of the spline generated considering
all the given trajectory points as path points to be interpolated with
continuous second derivative.

This way it has been tried to minimize the acceleration during the transi-
tions between segments. Nevertheless, it is always advisable to reduce the
speed to 0 whenever there is a discontinuity in the direction of the velocity
vector.

In Fig. 20a and Fig. 20b there are two examples of substitution of the
spline path with an optimum circular path. The center, the radius and the
vector related to the plane of the circumference are highlighted in red, or-
ange and yellow.
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Figure 20: Circular path automatic substitution
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