
ECE 486 / 687 Robot Dynamics & Control

Gennaro Notomista

PROJECT DESCRIPTION

Due date: Aug 4, 2025

Contents

1 ECE 486 2
1.1 Introduction and objective . 2
1.2 Instructions . 2
1.3 Performance evaluation . 4

2 ECE 687 5
2.1 Introduction and objective . 5
2.2 Instructions . 6
2.3 Performance evaluation . 6
2.4 Alternative for MASc and PhD students . 7

3 Code 8
3.1 Robot API . 8
3.2 Simulator . 9

4 Robohub schedule 10

1

1 ECE 486

1.1 Introduction and objective

Figure 1: A mobile robot tracking a path from a start to a goal location.

Objective

The objective of this project is path planning and control for a mobile robot. The con-
troller will leverage the property of differential flatness of the kinematic model of the
mobile robot.

The approach will consist of the following tasks:
1. Kinematically feasible path planning
2. Feedforward controller based on the endogeneous transformation
3. Feedback controller based on pole placement

1.2 Instructions

The robot is modeled as a unicycle, i.e. its kinematic model is
ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω,

(1)

where x and y are the components of the position of the robot in the plane, θ is its heading, and v and ω
are the longitudinal and angular velocity inputs, respectively. See also reference frames in Fig. 3b.

Kinematically feasible path planning Recall that the unicycle model is differentially flat, z =
[z1, z2]

T = [x, y]T ∈ R2 being the flat output. Therefore, from the knowledge of a smooth path z(t),
t ∈ [0, T], T > 0, the control input signals v(t) and ω(t) required to track it can be algebraically computed
as follows:

v(t) = ±
√

ż1(t)2 + ż2(t)2

ω(t) =
z̈2(t)ż1(t)− z̈1(t)ż2(t)

ż1(t)2 + ż2(t)2
.

(2)

2

Task 1

Plan a kinematically feasible path zd(t), t ∈ [0, 20]s, that starts at zs and ends at zg, for
arbitrarily chosen zs and zg. Assume the initial orientation of the robot is θs = 0 and its
final orientation is θg = −π

6 .

Plot the starting and goal locations together with the planned path.

Hint: Since you need the path to be at least twice differentiable to compute ω(t) from (2),
and you need to specify the initial and final orientation of the robot, you may want to
consider a cubic spline interpolating the initial and final points.

Feedforward controller design

Task 2

Using the expression of the path zd(t) planned in Task 1, and the algebraic relations in
(2), compute the input signals v(t) and ω(t), t ∈ [0, 20]s required by the robot to track
the planned path.

Plot the computed input signals over time in the interval [0, 20]s.

Plot the motion of the robot controlled using the computed input signals.

Feedback controller design The controller evaluated in Task 2 is open loop as it is solely based on the
planned path and does not account for the actual state in which the robot is at each point in time, but
rather only the one in which it should be. If the kinematic model does not faithfully represent the motion
of the robot or if there is a difference between the measured, or estimated, initial conditions of the robot
and the actual ones, the open loop controller is doomed to fail.
We can then leverage state feedback control design to mitigate this problem. Let w = [wT

1 , w
T
2]

T =
[zT , żT]T ∈ R4 and define its dynamics as follows:

ẇ =

[
0 I
0 0

]
︸ ︷︷ ︸

A

w +

[
0
I

]
︸︷︷︸
B

uw, (3)

where uw ∈ R2 is the new control input.

3

Task 3

Design a state feedback controller of the following form:

uw(t) = KP (zd(t)− z(t)) +KD(żd(t)− ż(t)), (4)

where KP > 0 and KD > 0 are controller gains.

Plot the motion of the robot controlled using the state feedback controller above.

Plot the input signals over the course of the experiment.

Hint: From the solution w(t) of the dynamical system (3) with input uw given by (4), use
(2) to compute the input signals v(t) and ω(t), t ∈ [0, 20]s required by the robot to track
the planned path.

1.3 Performance evaluation

A successful implementation of the tasks described in the previous section consists of:

• A kinematically feasible path planned between the prescribed starting and final poses
• Two controllers, of feedforward and feedback type, respectively
• A report containing the detailed description of the approach adopted to solve the project tasks,
alongside the required plots and references to the parts of the code which solve each part of the tasks

• The code written to solve the project tasks

Recall that the deliverables related to the project are as follows (including percentage of the overall course
grade):

• Final project report: 20%
• Project code: 5%

The format and the structure of the report must be as follows:

• Maximum length: 4 pages
• Format: PDF
• Template: IEEE conference template (https://www.ieee.org/conferences/publishing/templates.
html)

• Structure

– Section I: Proposed approach
– Section II: Results
– Section III: Discussion

The reports must include also the detailed description of the work carried out by each member of the
group, including what sections of the report were written by whom.

4

https://www.ieee.org/conferences/publishing/templates.html
https://www.ieee.org/conferences/publishing/templates.html

2 ECE 687

2.1 Introduction and objective

(a) The mobile manipulator
DJI RoboMaster EP used to ex-
ecute the pick-and-place task.

(b) A pick-and-place scenario with a pick-up location (blue), a
drop-off location (green), and obstacles (red).

Figure 2: Mobile manipulator robot and pick-and-place scenario of the project.

Objective

The objective of this project is to program the mobile manipulator DJI RoboMaster EP
(Fig. 2a) to perform a pick-and-place task consisting in (see Fig. 2b):

• Navigating to a known pick-up location
• Picking up an object
• Navigating to a known drop-off location
• Droping off the object
• Avoiding obstacles placed in the environment at known locations

The mobile manipulator is comprised of a mobile base controlling using longitudinal and angular velocity
inputs, carrying a robotic arm with a gripper mounted on its end-effector. The technical specifications of
the robot are available here: https://www.dji.com/ca/robomaster-ep/specs.

5

https://www.dji.com/ca/robomaster-ep/specs

2.2 Instructions

Tasks

Complete the following steps to achieve the pick-and-place task:

1. Assuming the mobile manipulator is at a known pick-up (resp. drop-off) location,
write a function to pick up (resp. drop off) an object at that location

2. Design control Lyapunov functions (CLFs) to drive the robot to known pick-up and
drop-off locations

3. Design control barrier functions (CBFs) to avoid obstacles placed at known locations
in the environment

4. Synthesize the control input for the mobile platform using a quadratic program
(QP) formulation to achieve safe navigation

5. Combine the controllers for the manipulator arm and the mobile platform developed
above to realize the desired pick-and-place task

2.3 Performance evaluation

The robot should be able to

• Navigate to a known pick-up location
• Pick up an object
• Navigate to a known drop-off location
• Drop off the object
• Avoid obstacles placed in the environment at known locations

Recall that the deliverables related to the project are as follows (including percentage of the overall course
grade):

• Final project report: 40%
• Project code: 10%

The format and the structure of the report must be as follows:

• Maximum length: 4 pages
• Format: PDF
• Template: IEEE conference template (https://www.ieee.org/conferences/publishing/templates.
html)

• Structure

– Section I: Proposed approach
– Section II: Results
– Section III: Discussion

The reports must include also the detailed description of the work carried out by each member of the
group, including what sections of the report were written by whom.
A short video (maximum 1 minute) to supplement the results may also be attached.

6

https://www.ieee.org/conferences/publishing/templates.html
https://www.ieee.org/conferences/publishing/templates.html

2.4 Alternative for MASc and PhD students

The project will consist of the solution to a problem in the student’s research area using the techniques
covered during the course.
In addition to the final deliverables, a proposal should be submitted following the instructions below:

• Maximum length: 1 page
• Format: PDF
• Template: IEEE conference template (https://www.ieee.org/conferences/publishing/templates.
html)

• Structure

– Section I: Problem description
– Section II: Novelty and/or impact
– Section III: How robot dynamics and control techniques play a key role
– Section IV: Technical challenges
– Section V: Metric for success
– Section VI: Timeline

• Deadline: June 1

The format and the structure of the final report must be as follows:

• Maximum length: 4 pages
• Format: PDF
• Template: IEEE conference template (https://www.ieee.org/conferences/publishing/templates.
html)

• Structure

– Section I: Introduction
– Section II: Literature review
– Section III: Materials and methods
– Section IV: Results
– Section V: Discussion

A short video (maximum 1 minute) to supplement the results may also be attached.

7

https://www.ieee.org/conferences/publishing/templates.html
https://www.ieee.org/conferences/publishing/templates.html
https://www.ieee.org/conferences/publishing/templates.html
https://www.ieee.org/conferences/publishing/templates.html

3 Code

The controller must be developed on your PC using Python starting from the files provided on LEARN,
under Content/Project/Code.

3.1 Robot API

The description of the files is as follows:

• main.py: Skeleton script to write project code
• mobile manipulator unicycle.py: Implementation of the class MobileManipulatorUnicycle—
inheriting from Robot implemented in robot.py—to control the base and the arm of the mobile
manipulator

• README.md: Instructions to get started with the code
• robot.py: Implementation of the class Robot handling the interface with the backend to receive
robot poses from the camera system in the Robohub and to send control inputs to the robot

• robot control comms.py: Utility classes and functions related to communication with the backend
• test.py: Script to test the interface with the backend to send control inputs to the robot and receive
its pose from the camera system in the Robohub

Note that you must (and need to) only modify the file main.py to solve the project. In the provided
main.py script, the robot ID has to be set on line 3. For example, if you belong to group 3, then line 3
should be

robot = MobileManipulatorUnicycle(robot id=3, backend server ip="192.168.0.2")

The object robot gives you an interface to the backend—which in turn interfaces with the robot and the
tracking camera system of the Robohub—through the following methods:

• set mobile base speed and gripper power

Description
Send longitudinal and angular speeds, as well as gripper commands, to
the mobile platform

Example of use

robot.set mobile base speed and gripper power(v=0.1,

omega=1.0, gripper power=1.0) moves the platform at 0.1 m/s
forward, 1.0 rad/s counterclockwise about the local z direction (see also
Fig. 3b), and opens the gripper

Example of use

robot.set mobile base speed and gripper power(v=-0.05,

omega=-2.0, gripper power=-1.0) moves the platform at 0.05 m/s
backward, 2.0 rad/s clockwise about the local z direction (see also
Fig. 3b), and closes the gripper

• set leds
Description Send RGB color to the robot LEDs

Example of use
robot.set leds(128, 32, 32) to set the color of the LEDs to (128,
32, 32) in RGB format

• set arm pose

Description The two input arguments control the position of the end effector

Example of use
robot.set arm pose(25.0, 25.0)moves the arm 25 mm forward and
25 mm upward

8

• get poses

Description

Get poses of the robot, pick-up and drop-off locations, as well as of
obstacles, in the global reference frame of the Robohub (see also Fig. 3b).
Each pose is a list of x, y position coordinates, and orientation θ (e.g.
robot pose is the list containing the position and orientation of the
robot, [xR, yR, θR])

Example of use
robot pose, pickup location, dropoff location,

obstacle 1 pose, obstacle 2 pose, obstacle 3 pose =

robot.get poses()

3.2 Simulator

You are encouraged to test your functions in simulation first. The test script test sim.py shows how to
use the functions provided in the simulator. In particular:

• robot = MobileManipulatorUnicycleSim(

robot id=1,

robot pose=[0.0, 0.0, 0.0],

pickup location=[0.75, 0.75],

dropoff location=[-0.75, -0.75],

obstacles location=[[0.5, 0.5], [-0.5, -0.5]])

initializes the robot at pose [0, 0, 0]. The pickup location and dropoff location variables can be
used to specify the starting and goal positions of the robot. If obstacles are not used, you may move
their location to be outside the environment by appropriately setting the variable obstacles location.

• robot.set mobile base speed and gripper power(

v=0.1,

omega=1.0,

gripper power=1.0)

moves the platform at 0.1 m/s forward, 1.0 rad/s counterclockwise. You may leave the gripper power

argument unset.

• robot pose, pickup location, dropoff location,

obstacle 1 pose, obstacle 2 pose, obstacle 3 pose = robot.get poses()

returns the poses of the robot, pick-up and drop-off locations, as well as of obstacles. The pose of
the robot is a list of x, y position coordinates, and orientation θ. The poses of the object are lists of
x, y position coordinates.

9

4 Robohub schedule

(a) A humanoid, a mobile manipulator, and the
ceiling camera system in the Robohub.

(b) Global reference frame in the Robohub (red and
green arrows are x and y directions) and local refer-
ence frame of the robot (red and green arrows cen-
tered at the robot).

(c) Block diagram of the closed-loop control of the mobile
manipulators in the Robohub.

Figure 3: The Robohub at University of Waterloo.

The Waterloo Robohub (Fig. 3a) is a collaborative robotics research facility located on the ground floor of
Engineering 7. It hosts a diverse fleet of robots (humanoids, quadrupeds, manipulators, ground, and aerial
mobile platforms) and it is equipped with an indoor positioning system comprised of a set of 20 Vicon
Vantage V5 cameras. The RoboMaster EP robots are controlled according to the feedback control loop
shown in Fig. 3c.
The schedule to perform project-related activities in the Robohub is reported in the table below (as well
as in the course syllabus).

Date Time
Suggested activity

ECE 486 ECE 687

Jul 7 8:30–11:30 Intro to RoboMaster EP Intro to RoboMaster EP
Jul 14 8:30–11:30 Path planning / Quidditch Object pick-up and drop-off
Jul 21 8:30–11:30 Feedforward control / Quidditch Optimization-based control (navigation)
Jul 28 8:30–11:30 Feedback control / Quidditch Optimization-based control (safety)

10

	ECE 486
	Introduction and objective
	Instructions
	Performance evaluation

	ECE 687
	Introduction and objective
	Instructions
	Performance evaluation
	Alternative for MASc and PhD students

	Code
	Robot API
	Simulator

	Robohub schedule

