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1 Introduction and objective

Figure 1: A mobile robot tracking a path from a start to a goal location.

Objective

The objective of this project is path planning and control for a mobile robot. The con-
troller will leverage the property of differential flatness of the kinematic model of the
mobile robot.

The approach will consist of the following tasks:
1. Kinematically feasible path planning
2. Feedforward controller based on the endogeneous transformation
3. Feedback controller based on pole placement
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2 Instructions

2.1 Robot model

The robot is modeled as a unicycle, i.e. its kinematic model is
ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω,

(1)

where x and y are the components of the position of the robot in the plane, θ is its heading, and v and ω
are the longitudinal and angular velocity inputs, respectively.

2.2 Project tasks

2.2.1 Kinematically feasible path planning

Recall that the unicycle model is differentially flat, z = [z1, z2]
T = [x, y]T ∈ R2 being the flat output.

Therefore, from the knowledge of a smooth path z(t), t ∈ [0, T ], T > 0, the control input signals v(t) and
ω(t) required to track it can be algebraically computed as follows:

v(t) = ±
√
ż1(t)2 + ż2(t)2

ω(t) =
z̈2(t)ż1(t)− z̈1(t)ż2(t)

ż1(t)2 + ż2(t)2
.

(2)

Task 1

Plan a kinematically feasible path zd(t), t ∈ [0, 10]s, that starts at zs = [−2,−2]m and
ends at zg = [1.5, 2.5]m. Assume the initial orientation of the robot is θs = 0 and its final
orientation is θg = −π

6 .

Plot the starting and goal locations together with the planned path in the simulator
environment.

Hint: Since you need the path to be at least twice differentiable to compute ω(t) from (2),
and you need to specify the initial and final orientation of the robot, you may want to
consider a cubic spline interpolating the initial and final points.

2.2.2 Feedforward controller design

Task 2

Using the expression of the path zd(t) planned in Task 1, and the algebraic relations in
(2), compute the input signals v(t) and ω(t), t ∈ [0, 10]s required by the robot to track
the planned path.

Plot the computed input signals over time in the interval [0, 10]s.
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2.2.3 Feedback controller design

The controller evaluated in Task 2 is open loop as it is solely based on the planned path and does not
account for the actual state in which the robot is at each point in time, but rather only the one in which
it should be. If the kinematic model does not faithfully represent the motion of the robot or if there is
a difference between the measured, or estimated, initial conditions of the robot and the actual ones, the
open loop controller is doomed to fail.
We can then leverage state feedback control design to mitigate this problem. Let w = [wT1 , w

T
2 ]T =

[zT , żT ]T ∈ R4 and define its dynamics as follows:

ẇ =

[
0 I
0 0

]
︸ ︷︷ ︸

A

w +

[
0
I

]
︸︷︷︸
B

uw, (3)

where uw ∈ R2 is the new control input.

Task 3

Design a state feedback controller of the following form:

uw(t) = KP (zd(t)− z(t)) +KD(żd(t)− ż(t)), (4)

where KP > 0 and KD > 0 are controller gains.

Run 100 simulations, each of which with different initial conditions for w, w0 := w(0),
drawn from a normal distribution with mean equal to [zTs , 0

T ]T and standard deviation
equal to 0.1 for all components, assumed to be independent, i.e.

w0 ∼ N
([
zs
0

]
, 0.1

[
I 0
0 I

])
. (5)

Plot the trajectories of the robot over the course of the 100 simulations, overlapped, in
the same simulator environment.

Hint: From the solution w(t) of the dynamical system (3) with input uw given by (4), use
(2) to compute the input signals v(t) and ω(t), t ∈ [0, 10]s required by the robot to track
the planned path.

2.3 Controller Implementation

The controller must be developed using the Python simulator provided on LEARN, under Content/Project/Code.
The test script test.py shows how to use the functions provided in the simulator. In particular:

• robot = MobileManipulatorUnicycleSim(

robot id=1,

robot pose=[0.0, 0.0, 0.0],

pickup location=[0.75, 0.75],

dropoff location=[-0.75, -0.75],

obstacles location=[[0.5, 0.5], [-0.5, -0.5]])

initializes the robot at pose [0, 0, 0]. The pickup location and dropoff location variables should

4



be used to specify the starting and goal positions of the robot. Since obstacles are not used,
you may move their location to be outside the environment by appropriately setting the variable
obstacles location.

• robot.set mobile base speed and gripper power(

v=0.1,

omega=1.0,

gripper power=1.0)

moves the platform at 0.1 m/s forward, 1.0 rad/s counterclockwise. You may leave the gripper power

argument unset.

• robot pose, pickup location, dropoff location,

obstacle 1 pose, obstacle 2 pose, obstacle 3 pose = robot.get poses()

returns the poses of the robot, pick-up and drop-off locations, as well as of obstacles. Each pose is a
list of x, y position coordinates, and orientation θ.
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3 Performance evaluation

A successful implementation of the tasks described in the previous section consists of:

• A kinematically feasible path planned between the prescribed starting and final poses
• Two controllers, of feedforward and feedback type, respectively
• A report containing the detailed description of the approach adopted to solve the project tasks,

alongside the required plots and references to the parts of the code which solve each part of the tasks
• The code written to solve the project tasks

Recall that the deliverables related to the project are as follows (including percentage of the overall course
grade):

• Final project report: 15%
• Project code: 5%

More details on the format and the structure of the reports can be found on the syllabus.
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