
Optimization-based Control of Robotic Systems
Gennaro Notomista

Updated: June 28, 2023

This course will introduce students to modern optimization-based
methods for robot control. Robot models will be described first. Then,
unconstrained and constrained optimization problems will be intro-
duced. The special case of convex optimization will be presented and
used to formulate stabilizing and safety-ensuring controllers for robotic
systems. Finally, two lectures will be dedicated to the optimization-
based control of manipulators and mobile robots, respectively. By
the end of the course, students should be able to formulate and solve
robot control problems arising in their research projects by means of
optimization-based control techniques.

Contents

Introduction to Robot Control 2

Introduction to Feedback Control 2

Feedback Control of Robotic Systems 3

Kinematic Model of Robotic Systems 4

Dynamic Model of Robotic Systems 6

Unconstrained, Constrained, and Convex Optimization Problems 7

Unconstrained Optimization 7

Constrained Optimization: Equality Constraints 10

Constrained Optimization: Inequality Constraints 12

Min-norm controllers – Part I: Stability and Control Lyapunov Functions 14

Stability-like Tasks 14

Control Lyapunov Functions 15

Min-norm Controller 16

Min-norm controllers – Part II: Invariance and Control Barrier Functions 18

Invariance-like Tasks 18

Control Barrier Functions 18

Min-norm Controller 20

Combining Stability-like and Invariance-like Tasks 20

optimization-based control of robotic systems 2

Introduction to Robot Control

Introduction to Feedback Control

Try to balance a stick with your eyes closed. Solution: impossible.

Figure 1: Balancing a stick.

Opening your eyes closes the loop. And now balancing the stick becomes
possible.

Figure 2: Closing the loop to balance a
stick.

Closed-loop, or feedback, control is a powerful tool to make sys-
tems (e. g., sticks on our hand) behave as we wish (e. g., stay upright).

Figure 3: Block diagram of a closed-
loop stick inclination control.

optimization-based control of robotic systems 3

Feedback Control of Robotic Systems

Robotics is commonly defined as the science studying the intelligent
connection between perception and action1—which does not sound 1 Bruno Siciliano, Lorenzo Sciavicco,

Luigi Villani, and Giuseppe Oriolo.
Robotics: modelling, planning and control.
Springer Science & Business Media,
2010; and Richard M. Murray, Zexiang
Li, and S. Shankar Sastry. A Mathemat-
ical Introduction to Robotic Manipulation.
CRC Press, 1994

too different from what feedback control is. With the tremendous
developments that artificial intelligence and machine learning had
in the last few decades, and the application of these disciplines to
robotic systems, the definition given above probably does not encom-
pass everything that nowadays we would recognize to be a robot. For
the sake of controlling robots, however, the above is still an accurate
definition.

In these lectures, we will focus on robotic manipulators and mo-
bile robots. The former are comprised of multiple rigid bodies inter-
connected to each other by different types of joints, and are typically
anchored to a fix point in space. The latter can (more or less) freely
move in space.

Figure 4: Feedback control of a robotic
manipulator.

Figure 4 shows the feedback loop used to control a robotic manip-
ulator, where joint torques are used to regulate joint angles to desired
values.

Figure 5: Feedback control of a differen-
tial drive mobile robot.

Figure 5 shows the feedback loop used to control a differential-
drive mobile robot, where the speeds of its left and right wheels can

optimization-based control of robotic systems 4

be independently controlled to move forward and backward, and
to turn left and right. This allows the robot to move to a desired
position.

Controlling a robot means defining functions to evaluate the
control inputs (e. g., joint torques, wheel speeds) to be supplied to the
robot for it to achieve a desired behavior. In this course, we will look
at optimal ways to define such functions. In particular, the controller
synthesis will involve solving optimization problems in the feedback
loop.

Kinematic Model of Robotic Systems

The robot kinematics are mathematical relations describing how a
robot moves without considering the forces and torques that caused
the motion.

The configuration q of a robot is a complete description of the
location of every point of the robot. The set of all configurations is
the configuration space and it is denoted by C .

Figure 6: Planar robot at configuration
q = [1, 2] ∈ R2.

Example 1 The configuration of a mobile robot translating on a plane
can be described using a 2-dimensional vector whose components are the
coordinates of the robot in a reference frame defined on the plane. Therefore,
q = [x, y]T ∈ R2 = C (see Fig. 6).

Figure 7: Planar robot at configuration
q = [1, 2, π/4] ∈ R2 × SO(2).

Example 2 The configuration of a mobile robot translating and rotating
on a plane can be described using a 3-dimensional vector whose components
are the coordinates of the robot in a reference frame defined on the plane
and its orientation with respect to a fixed axis in the plane. Therefore, q =

[x, y, θ]T ∈ R2 × SO(2) = C (see Fig. 7).

Figure 8: Manipulator robot at configu-
ration q = [π/4,−π/4, π/2,−π/2] ∈
T4.

Example 3 The configuration of a manipulator with n revolute joints can
be described using a n-dimensional vector whose components are the angles
of the n revolute joints of the robot. Therefore, q = [θ1, . . . , θn]T ∈ Tn =

S1 × . . .× S1︸ ︷︷ ︸
n

= C (see Fig. 8).

The forward kinematics consists in determining the pose (po-
sition and orientation) of the end effector, xe, as a function of the
configuration (angles of the joints) of the robot, q:

xe = f (q), (1)

where f : C → T : q 7→ xe maps from the configuration space to the
task space T , to which the pose of the end effector belongs.

For robots comprised of a single rigid
body, the function f is trivial, while it
may be quite complicated for robotic
systems comprised of multiple con-
nected rigid bodies, such as robotic
manipulators and articulated mobile
robots

Link to Google Colab for the forward kinematics of manipulators.

https://colab.research.google.com/drive/1E63DbDJzjjhoBL2ScvpWf3BToyniqoK5?usp=sharing

optimization-based control of robotic systems 5

The differential (or velocity) kinematics express the relation
between the velocities in the task space, ẋe, and the velocities in the
configuration space, q̇. Since the forward kinematics map q to xe,
the mathematical expression of the differential kinematics can be
determined by differentiating (1):

ẋe = J(q)q̇, (2)

where
J(q) =

∂ f
∂q

(q) (3)

is the Jacobian of f , which plays an important role in the analysis of
the motion of robotic systems.

The Jacobian is also used in algorithms
to solve the inverse kinematics prob-
lem, i. e., finding the configuration
q̄ to achieve a given pose of the end
effector x̄e. Using optimization-based
controllers we will not need to deal
with this problem explicitly.

In the case of mobile robots, the kinematic model expresses the
relation between velocities in the configuration space, q̇, and control
inputs, generally denoted by u ∈ Rm, for some m, in the following
form:

q̇ = g(q)u. (4)

A full treatment of how to derive the kinematic model of mobile
robots can be found in traditional robotics books2. In the following, 2 Mark W. Spong, Seth Hutchinson,

and Mathukumalli Vidyasagar. Robot
modeling and control. John Wiley & Sons,
2020; and Alessandro De Luca and
Giuseppe Oriolo. Modelling and control
of nonholonomic mechanical systems.
In Kinematics and dynamics of multi-body
systems, pages 277–342. Springer, 1995

an important example of mobile robot is reported.

Example 4 (Unicycle) Unicycles are used to model a large variety of
mobile robotic systems: ground, marine, and even aerial robots are very often
abstracted using a rigid body that can roll without slipping on a planar
surface as a coin (see Fig. 9). The kinematic model of the unicycle is given
by:

ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω,

(5)

Figure 9: Unicycle.

where x and y are the coordinates of the position of the system in a refer-
ence frame defined on the plane where the robot moves, θ is its orientation,
and v and ω are the linear and angular velocity control inputs. Therefore,
defining the configuration of the robot q = [q1, q2, q3]

T = [x, y, θ]T and the
control input vector u = [u1, u2]

T = [v, ω]T , we can write (5) as follows:

q̇ =

cos q3

sin q3

0

 u1 +

0
0
1

 u2. (6)

Link to Google Colab for the differential kinematics of

manipulators and mobile robots.

https://colab.research.google.com/drive/1E63DbDJzjjhoBL2ScvpWf3BToyniqoK5?usp=sharing#scrollTo=zgc-dRIfrNAZ
https://colab.research.google.com/drive/1E63DbDJzjjhoBL2ScvpWf3BToyniqoK5?usp=sharing#scrollTo=q31Yxw8Gry2R

optimization-based control of robotic systems 6

Dynamic Model of Robotic Systems

While the kinematic description of a robot is purely geometric, the
dynamics of a robot consist in the mathematical relation describing
the effect that generalized forces (forces and torques) acting on the
generalized coordinates (components of the robot configuration)
of the robot have on the motion of the robot. In other words, the
dynamics of a robot tell us, for instance, how joint torques, τ, of a
manipulator generate joint accelerations, q̈. Mathematically, this can
be expressed as follows:

D(q)q̈ + C(q, q̇)q̇ + g(q) = τ, (7)

where the terms on the left-hand side represent the torques acting on
the joints due to inertial (D(q)q̈), centrifugal and Coriolis (C(q, q̇)q̇),
and gravitational (g(q)) effects.

In this course, we will focus on kinematic models of robotic sys-
tems. The same formulation, however, can be applied to dynamic
models as well.

optimization-based control of robotic systems 7

Unconstrained, Constrained, and Convex Optimization Problems

In the next sections, our objective will be to design robot controllers
to achieve desired robot behaviors. In other words, we will figure out
what to implement inside the Robot controller block of Figures 4 and
5, the output of which are the control inputs for the robotic systems
to control. In these lectures, we will focus on optimization-based
robot controllers, i. e., control algorithms that involve solving an
optimization problem to evaluate the control input.

Using optimization for robot control is particularly conve-
nient for the following reasons3: 3 Stephen Boyd and Lieven Vanden-

berghe. Convex optimization. Cambridge
university press, 2004(i) The language of optimization provides a general and natural

way of expressing control objectives in mathematical terms

(ii) There are well-developed theoretical and algorithmic frame-
works to solve optimization problems

(iii) Today, we have the computational power to deploy optimization-
based controllers on most robotic platforms

In this section, we will recap basic concepts of optimization which
will be used in the following sections to design optimization-based
robot controllers.

Unconstrained Optimization

The goal in unconstrained optimization is to pick the best value for a
decision variable so that a cost is minimized. Let u = [u1, . . . , um]T ∈
Rm be the decision variable, and g : Rm → R, g ∈ C1, be the cost C1 is the set of continuously differen-

tiable functions.function. The unconstrained optimization problem can be then stated
as follows:

minimize
u

g(u). (8)

u?
is a (local) minimizer of g if ∃δ > 0 such that g(u?) ≤ g(u)

∀u ∈ Bδ(u?).

Figure 10: The set Bδ(u?) = {u ∈ Rm :
‖u− u?‖ < δ} is the open ball of radius
δ centered at u?.

A necessary condition for u? to be a (local) minimizer of g is that

∂g
∂u

(u?) = 0. (9)

To prove that is the case, let u? be a minimizer of g and pick ε > 0
and v ∈ Rm, ‖v‖ = 1, such that u? + εv ∈ Bδ(u?) (see Fig. 10). Then,

g(u? + εv) = g(u?) + ε
∂g
∂u

(u?)v + h.o.t.. (10)

Assume ∂g
∂u (u

?) 6= 0. If that is the case, we could pick v = − ∂g
∂u (u

?)T ,

h.o.t. stands for higher order terms
and it is used to denote terms which
are o(ε)—little-o notation—where
lim
ε→0

o(ε)
ε = 0.

optimization-based control of robotic systems 8

which would result in

g(u? + εv) = g(u?)− ε
∂g
∂u

(u?)
∂g
∂u

(u?)T + o(ε)

= g(u?)− ε

∥∥∥∥ ∂g
∂u

(u?)

∥∥∥∥2
+ o(ε)

< g(u?),

(11)

for ε → 0. This contradicts the hypothesis that u? is a minimizer of g.
Therefore, necessarily we need ∂g

∂u (u
?) = 0.

Remark 1 The condition in (9) is necessary but not sufficient. u? could
satisfy (9) and be a maximizer or a saddle point, rather than a minimizer.

Remark 2 The expression in (11) suggests the following numerical algo-
rithm to solve unconstrained optimization problems:

Initialize u0 ∈ Rm, k = 0
while

∥∥∥ ∂g
∂u (uk)

T
∥∥∥ > ∆ do

uk+1 ← uk − α
∂g
∂u (uk)

T

k← k + 1
end while

where α > 0 is the step size and ∆ > 0 is a convergence threshold. This
algorithm is known as the steepest descent algorithm.

Example 5 Consider the following unconstrained optimization problem:

minimize
u

uTQu− bTu, (12)

where Q = QT > 0 is a symmetric and positive definite m×m matrix, and
b ∈ Rm. For u? to be a minimizer, we need

∂

∂u
(u?TQu? − bTu?) = 2u?TQ− bT = 0. (13)

The minimizer is then given by

u? =
1
2

Q−1b. (14)

We do not know, however, whether u? is a minimizer, a maximizer, or a
saddle point.

A sufficient condition for u? to be a
minimizer is based on the computation
of the second derivative of the cost
function at u?: ∂2 g

∂u2 (u?) > 0 =⇒ u? is a
minimizer.If the function g is convex, then a local minimizer of g is the

(unique) global minimizer. A function g : Rm → R is convex if
g(αu1 + (1− α)u2) ≤ αg(u1) + (1− α)g(u2), ∀α ∈ [0, 1] and ∀u1, u2 ∈
Rm (see Fig. 11). A sufficient condition for g to be convex is that
∂2g
∂u2 (u) ≥ 0 ∀u ∈ Rm.

Example 6 (Example 5 cont.) ∂2g
∂u2 (u?) = Q > 0, therefore the optimiza-

tion cost is convex and u? = 1
2 Q−1b is the unique global minimizer.

optimization-based control of robotic systems 9

Figure 11: Definition of convex fucn-
tion. g is convex if the red line is above
the blue curve between u1 and u2.

Example 7 (Inverse kinematics) Consider the following unconstrained
optimization problem:

minimize
q̇

‖ẋe − Jq̇‖2, (15)

where ẋe ∈ Rr, J ∈ Rr×n, with r ≥ n, and we dropped the dependency of J r is the dimension of the task space T
defined in the previous section.from q for ease of notation. Notice how this is the same optimization problem

of Example 5, where Q = JT J ≥ 0, b = 2JT ẋe, and the optimization
variable u here is called q̇. Then, by substituting the expressions of Q and b There is actually an additional constant

term in the optimization cost of (15)
which is however irrelevant for the
purpose of minimizing it.

in (14), we can write down the solution of (15) directly:

q̇? =
1
2
(JT J)−1︸ ︷︷ ︸

Q−1

2JT ẋe︸ ︷︷ ︸
b

= J†
l ẋe, (16)

where J†
l = (JT J)−1 JT is known as the left pseudo inverse of J and it exists

as long as J has maximum rank (rank (J) = n), i. e., it is non singular.
The solution q̇? of the optimization problem considered in this example

can be used to solve the inverse kinematics problem for manipulators that
have less degrees of freedoms (n) that the dimension of the task space (r). The
inverse kinematics problem consists in finding the configuration q̄ that leads
to a given end effector pose x̄e. If we set ẋe in (15) equal to x̄e − xe, where
xe is the actual end effector pose, the q̇? solution of (15) can be used as a
control input to drive the robot to the configuration corresponding q̄ to the
end effector pose x̄e.

Link to Google Colab for unconstrained optimization.

https://colab.research.google.com/drive/1sILiJfr4bVj3ZZZkDXUySOrb0pkq002T?usp=sharing

optimization-based control of robotic systems 10

Constrained Optimization: Equality Constraints

Consider the following optimization problem:

minimize
u

g(u)

subject to h(u) = 0,
(17)

where h : Rm → Rk. In the unconstrained optimization problem
in (8), we could search for the optimal u in the entire Rm. In the
constrained optimization problem (17), we restrict the search space to
decision variables u such that h(u) = 0. Such decision variables are
called feasible.

Figure 12: Optimal solutions of (17). u
is optimal if the gradient of g vanishes
at u (as for the case of u?

1) or if it is
orthogonal to the tangent to the curve
corresponding to h = 0 (as for the case
of u?

2 and u?
3). The case depicted is for

m = 2 and k = 1, so g : R2 → R and
h : R2 → R.

Looking at Fig. 12, for u to be the solution of (17), either ∂g
∂u (u)

T =

0 or ∂g
∂u (u)

T ⊥ Th, where Th denotes the tangent line/plane to the
curve/surface h = 0. The tangent line/plane to the curve/surface
h = 0 is orthogonal to the gradient of h, i. e., Th ⊥ ∂h

∂u (u)
T . Then, we

can express the optimality conditions as follows: u? is optimal if

∂g
∂u

(u?)T ‖ ∂h
∂u

(u?)T

i. e.
∂g
∂u

(u?)T = −λ
∂h
∂u

(u?)T for some λ ∈ R

i. e.
∂g
∂u

(u?)T + λ
∂h
∂u

(u?)T = 0 for some λ ∈ R

i. e.
∂

∂u
(g(u?) + λh(u?)) = 0 for some λ ∈ R.

(18)

Figure 13: h(u) = 0 is the line (1-
dimensional variety) intersection of
k k − 1-dimensional planes, h1(u) =
0, ..., hk(u) = 0.

In the general case (arbitrary m and k), h(u) = 0 is a system of
k equations, each of which (hi(u) = 0, i = 1, . . . , k) represents a
k − 1-dimensional plane (see Fig. 13). Thus, geometrically, h(u) = 0
represents a line. The same reasoning carried out above holds, and

optimization-based control of robotic systems 11

we can write the necessary condition for optimality as follows:

∂g
∂u

(u?)T = −
k

∑
i=1

λi
∂hi
∂u

(u?)T for some λ ∈ Rk

i. e.
∂g
∂u

(u?)T + λT ∂h
∂u

(u?)T = 0 for some λ ∈ Rk

i. e.
∂

∂u
(g(u?) + λTh(u?)) = 0 for some λ ∈ Rk,

(19)

where λ = [λ1, . . . , λk]
T is a k-dimensional vecetor.

The function L(u, λ) = g(u) + λTh(u) which appears in (19) is
known as the Lagrangian and λ is the vector of Lagrange multipliers. If
u? is a minimizer of (17), then ∃λ? ∈ Rk such that ∂L

∂u (u
?, λ?) = 0

∂L
∂λ (u

?, λ?) = 0.
(20)

Example 8 Consider the following constrained optimization problem:

minimize
u

1
2
‖u‖2

subject to Au = b,
(21)

where A ∈ Rk×m, k ≤ m, has linearly independent rows, and b ∈ Rk,

If A has linearly independent rows,
rank (A) = k. This condition corre-
sponds to enforcing linearly indepen-
dent constraints.b ∈ R (A).
R (A) = {v ∈ Rk : ∃w ∈
Rm such that Aw = v} is the range
of A.

To find the minimizer, we define the Lagrangian L(u, λ) = 1
2‖u‖2 +

λT(Au− b) and solve the following system of equations: ∂L
∂u (u

?, λ?) = u?T + λ?T A = 0
∂L
∂λ (u

?, λ?) = Au? − b = 0.
(22)

From the first equation we have u? = −ATλ?, which, substituted in the
second equation, gives λ? = −(AAT)−1b. Thus, u? = AT(AAT)−1b =

A†
r b, where A†

r is known as the right pseudo inverse of A and it exists
thanks to the assumption that A has linearly independent rows.

Exercise 1 (Inverse kinematics) Solve the following constrained opti-
mization problem:

minimize
q̇

‖q̇‖2

subject to Jq̇ = ẋe,
(23)

where ẋe ∈ Rr, ẋe ∈ R (J), and J ∈ Rr×n, with r ≤ n.
Similarly to Example 7, the solution q̇? of the optimization problem (23)

can be used to solve the inverse kinematics problem, this time for redundant
manipulators, i. e., manipulators that have more degrees of freedoms (n) that
the dimension of the task space (r). Setting ẋe = x̄e − xe in (23), where xe is
the actual end effector pose, the q̇? can be used as a control input to drive the
robot to the configuration corresponding to the desired end effector pose x̄e.

optimization-based control of robotic systems 12

Link to Google Colab for optimization with equality constraints.

Constrained Optimization: Inequality Constraints

Consider the following optimization problem:

minimize
u

g(u)

subject to h(u) ≤ 0,
(24)

where h : Rm → Rk and the symbol ≤ is used component-wise.
Feasible decision variables of (8) are all u such that h(u) ≤ 0. Neces-
sary conditions for optimality can be derived similarly to the case of
equality constraints of the previous section. The condition for u to be

Figure 14: Optimal solutions of (24). u
is optimal if the gradient of g vanishes
at u (as for the case of u?

1 and u?
2) or if it

is orthogonal to the tangent to the curve
corresponding to h = 0 and pointing
towards the infeasible region, where
h > 0 (as for the case of u?

3). Notice how
u4 is not optimal. In fact, the gradient
at u4 is orthogonal to the tangent to the
curve corresponding to h = 0 but it is
pointing towards the feasible region.
Therefore, there are nearby points
which are feasible and yield a lower
value of the cost g. The case depicted is
for m = 2 and k = 1, so g : R2 → R and
h : R2 → R.

the solution of (24) are the following (see Fig. 14):If h(u?) < 0, then ∂g
∂u (u

?) = 0

If h(u?) = 0, then ∂g
∂u (u

?) = 0 ∨ ∂g
∂u (u

?) = −λT ∂h
∂u (u

?), for λ > 0.
(25)

These conditions can be compactly expressed as follows:
∂

∂u (g(u?) + λ?Th(u?)) = 0

λ?Th(u?) = 0

λ? ≥ 0

(26)

Therefore, if u? is a minimizer of (24), then ∃λ? ∈ Rk such that

∂L
∂u (u

?, λ?) = 0

h(u?) ≤ 0

λ?Th(u?) = 0

λ? ≥ 0.

(27)

https://colab.research.google.com/drive/1sILiJfr4bVj3ZZZkDXUySOrb0pkq002T#scrollTo=u3tmqyeVtGTE

optimization-based control of robotic systems 13

Link to Google Colab for optimization with inequality constraints.

https://colab.research.google.com/drive/1sILiJfr4bVj3ZZZkDXUySOrb0pkq002T#scrollTo=9tlRu1GZWpPv

optimization-based control of robotic systems 14

Min-norm controllers – Part I: Stability and Control Lyapunov Func-
tions

The optimization tools developed in the previous section are used in
this and the following section to develop controllers to execute high-
level robotic tasks. The objective of the optimization problems will be
to evaluate the best control inputs (e. g., q̇ in the kinematic model of
manipulators (2), u in the kinematic model of mobile robots (4)) with
respect to some cost function and subject to a number of constraints.
In particular, in the following we will focus on expressing robotic tasks
as constraints of specific classes of optimization problems.

As we will deal with manipulators and mobile robots

alike, from now on, we will express the model of such robotic sys-
tems in the following form, known as control affine : Control affine structures arise in all

systems whose model is derived from
the Euler-Lagrange equations. The
term f0 encodes inertial effects and is
nonzero only if the dynamics of the
system are considered, as shown in
Example 9.

ẋ = f0(x) + f1(x)u, (28)

where x ∈ Rn denotes the robot state, u ∈ Rm the robot input,
f0 : Rn → Rn and f1 : Rn → Rn×m are Lipschitz continuous vector
fields.

Example 9 Equation (28) may be used to represent the kinematic and
dynamic models developed in the previous sections. The following table
reports the expression of the quantities in (28) for manipulators and mobile
robots.

Model x u f0(x) f1(x)
Kinematic model of manipulators (2)
ẋe = J(q)q̇

xe q̇ 0 (J ◦ f−1)(xe)

Kinematic model of mobile robots (4)
q̇ = g(q)u

q u 0 g(q)

Kinematic model of manipulators (7)
Dq̈ + Cq̇ + g = τ

[
q
q̇

]
τ

[
q̇

−D−1Cq̇− D−1g

] [
0

D−1

]

Stability-like Tasks

In these lectures, we will consider two types of task models which
are able to encompass a large variety of robotic tasks. The first class
of tasks are stability-like tasks. These tasks consist in driving the state
of the system x to a desired set S ⊂ Rn.

Figure 15: A stability-like task consists
in driving the state of the robot, x(t),
from its initial condition x(t0) to a
desired set S, as t→ ∞.

Examples of stability-like tasks include regulating the end effector
of a manipulator to a desired pose, orienting the end effector towards
a desired point of interest, tracking a trajectory in the task space. To
formulate such tasks as constraints of an optimization problem, we

optimization-based control of robotic systems 15

will resort to an important control-theoretic technique called control
Lyapunov function4. 4 Eduardo D Sontag. A lyapunov-

like characterization of asymptotic
controllability. SIAM journal on control
and optimization, 21(3):462–471, 1983Control Lyapunov Functions

Driving the state x of a system to a set S can be reworded as making
the set S asymptotically stable, i. e.,—without going into the details of
theory of stability—ensuring that, no matter what the initial value of
the state is, eventually x is going to approach the set S.

Assume we would like to drive x to 0. As x follows the dynam-
ics in (28), our goal becomes choosing u so that x → 0. This, in
general is a difficult problem since x is a n-dimensional vector, u is
a m-dimensional vector, so we need to choose m values to drive n
values to 0, and the two are related to each other by the nonlinear
differential equation (28).

The idea behind control Lypaunov functions consists in
finding a function V : Rn → R, V ∈ C1 and positive definite, such V is positive definite if V(x) ≥ 0 for all

x ∈ Rn and V(x) = 0⇔ x = 0,that V → 0 as x → 0. As the value of V is a scalar-valued function,
we have greatly simplified the problem, since now we just need to
drive one value to 0, i. e. the value V(x). The dynamics of V can be
found by applying chain rule as follows:

V̇ =
dV
dt

=

=
∂V
∂x

dx
dt

=
∂V
∂x

(f0(x) + f1(x)u)

=
∂V
∂x

f0(x) +
∂V
∂x

f1(x)u,

(29)

which is still affine in the control input u.

Figure 16: The comparison lemma can
be used to go from the differential
equation V̇(t) = −V(t)—whose
solution is the exponential function
V(t) = V0e−(t−t0) → 0 as t → ∞—to the
differential inequality V̇(t) ≤ −V(t),
whose solution converges to 0 as
t→ ∞.

In order to drive V to 0, we can leverage the comparison lemma5 5 Hassan K Khalil. Nonlinear control.
Pearson New York, 2015

optimization-based control of robotic systems 16

and enforce the following constraint (see Fig. 16):

V̇(x, u) ≤ −V(x). (30)

If V satisfies the differential inequality (30), then V(x(t)) → 0 as
t→ ∞. Substituting the dynamics of V, (29), in (30), one obtains:

∂V
∂x

f0(x) +
∂V
∂x

f1(x)u ≤ −V(x), (31)

which is an affine constraint of the robot control input u

V is called a Control Lyapunov Function (CLF) for the sys-
tem (28) if there exists a class K function α such that ∀x 6= 0

inf
u

{
∂V
∂x

f0(x) +
∂V
∂x

f1(x)u + α(V(x))
}
≤ 0. (32)

Figure 17: A class K function α is a
continuous function such that α(0) = 0
and α is strictly increasing.

If the condition in (32) is always satisfied, then we can always
choose a u such that V̇(x, u) ≤ −α(V(x)), which will result in V → 0
as t → ∞, i. e., it will result in the execution of the stability-like task
where the set S to reach is given by S = {x ∈ Rn : V(x) = 0} = {0}.

Min-norm Controller

The expression in (32) looks like a constraint that, given the value of
x, we can evaluate and enforce on u to make V, and hence x, go to 0.
The question that remains to answer now is: How do we choose u?

Let’s do it in the laziest possible way, i. e., by picking the u
that has minimum squared norm. This idea leads to the following
optimization problem to evaluate the robot controller u that drives x
to 0:

minimize
u

‖u‖2

subject to
∂V
∂x

f0(x) +
∂V
∂x

f1(x)u + α(V(x)) ≤ 0.
(33)

Equation (33) is a convex quadratic program (QP) as the cost is
quadratic in u and the constraint is affine in u. The controller u? so-
lution of (33) is known as the min-norm controller6. As the norm of the 6 Eduardo D Sontag. A ‘universal’

construction of Artstein’s theorem on
nonlinear stabilization. Systems &
control letters, 13(2):117–123, 1989

control input, ‖u‖, is proportional to the energy utilized by the robot,
the controller u? is also known as the minimum-energy controller.

Example 10 Assume we have a robot with state x and dynamics ẋ = u. ẋ = u, known as single integrator
dynamics, is a special case of a control
affine system, where f0 is the zero
function and f1(x) is equal to an
identity matrix of appropriate size for
all x

We would like to drive x to 0. In order to use the min-norm controller solu-
tion of (33), the first step is to define a suitable control Lyapunov function.
Let us choose the following function:

V : Rn → R : x 7→ ‖x‖2, (34)

optimization-based control of robotic systems 17

which is differentiable and positive definite. The minimum-energy controller
can be evaluated by solving the following optimization problem:

minimize
u

‖u‖2

subject to 2xTu︸ ︷︷ ︸
∂V
∂x f1(x)u

+ ‖x‖2︸︷︷︸
α(V(x))

≤ 0. (35)

This is an inequality-constrained optimization problem like the one in

Here, we chose the class K function α to
be the identity, i e., α(s) = s.

(24) and therefore can be solved by solving the system of equations and
inequalities (27). In this simple case, the following closed form solution can
be found:

u? =

− x
2 if x 6= 0

0 otherwise

 = − x
2

. (36)

In general, when more tasks need to be executed, and therefore more con-
straints are enforced, one needs to resort to numerical algorithms to solve
constrained optimization problems.

Link to Google Colab for stability-like tasks of manipulators

and mobile robots.

https://colab.research.google.com/drive/1o4KazZySk6BFG3-ki5p8qj-wUIn_4_ow?usp=sharing
https://colab.research.google.com/drive/1o4KazZySk6BFG3-ki5p8qj-wUIn_4_ow?usp=sharing

optimization-based control of robotic systems 18

Min-norm controllers – Part II: Invariance and Control Barrier Func-
tions

In the previous section, we defined stability-like tasks as tasks that
are executed by driving the state x of a dynamical system (28) to a
desired set S. In this section, we introduce a second type of tasks
which are executed by letting the state of the system remain within a
desired set.

Invariance-like Tasks

The execution of invariance-like tasks consists in ensuring that the state
x of a dynamical system (28) remains confined in a desired set S. In
dynamical system theory, invariance—dual property of stability—
can be interpreted as an example of safety, intended in the following
sense: If a trajectory originates inside an invariant set, it will never
reach the complement of the set, representing the unsafe region.

Figure 18: An invariance-like task
consists in keeping the state of the
robot, x(t), within a desired set S, for
all t ≥ t0.

Examples of invariance-like tasks include avoiding joint limits of
a manipulator, avoiding collisions with objects, other robots, humans
in the robot environment, keeping enough energy in the battery of
the robots. Analogously to the stability-like tasks, our objective is to
encode invariance-like tasks as constraints of an optimization prob-
lem. In order to do so, we will leverage a control-theoretic technique
known as control barrier functions7. 7 Aaron D Ames, Samuel Coogan,

Magnus Egerstedt, Gennaro Notomista,
Koushil Sreenath, and Paulo Tabuada.
Control barrier functions: Theory and
applications. In 2019 18th European
control conference (ECC), pages 3420–
3431. IEEE, 2019

Control Barrier Functions

To execute invariance-like tasks, we need to keep the state x of a sys-
tem within a set S. This can be reworded as making the set S (forward)
invariant, so that, if the state is inside the set S at the initial time t0, it Forward invariant is used to specify

the fact that we are interested in the
invariance property for future times.

will remain inside S for all future times t ≥ t0, i. e.:

x(t0) ∈ S =⇒ x(t) ∈ S ∀t ≥ t0. (37)

Assuming x(t0) ∈ S, given the control affine dynamics (28) of x,
our goal is to pick a control input u so that x(t) ∈ S for all t ≥ t0.
Just like stability, this is in general a difficult problem, and, just like
stability, we will reduce it to a 1-dimensional problem. To do so, we
make use of control barrier functions.

Figure 19: Crosshatched in yellow is
the 200-superlevel set of the terrain
elevation function (expressed in meters)
in the neighborhood Urca in Rio de
Janeiro.

Let us start by considering a function h : Rn → R, h ∈ C1,
whose 0-superlevel set is the set S to be rendered invariant, i. e., the set
S can be expressed as follows:

S = {x ∈ Rn : h(x) ≥ 0}, (38)

optimization-based control of robotic systems 19

so that
h > 0 =⇒ x ∈ S◦

h = 0 =⇒ x ∈ ∂S

h < 0 =⇒ x ∈ SC

(39)

The relations in (39) suggest that, in order to keep x ∈ S, we just need

S◦, ∂S and SC denote the interior, the
boundary, and the complement of the
set S, respectively.

to keep the (scalar) value of h to be nonnegative. In order to control
the value of h, we need to know its dynamics. Proceeding similarly
to (29), leveraging the dynamics of x, we express the dynamics of h
using chain rule as follows:

ḣ =
dh
dt

=

=
∂h
∂x

dx
dt

=
∂h
∂x

(f0(x) + f1(x)u)

=
∂h
∂x

f0(x) +
∂h
∂x

f1(x)u.

(40)

Figure 20: The comparison lemma can
be used to go from the differential
equation ḣ(t) = −h(t)—whose solution
is the exponential function h(t) =
h0e−(t−t0) → 0 as t → ∞—to the
differential inequality ḣ(t) ≥ −h(t),
whose solution is positive for all t
provided that h0 > 0.

Given these dynamics, and leveraging again the comparison
lemma8, we can enforce the following constraint (see Fig. 20): 8 Hassan K Khalil. Nonlinear control.

Pearson New York, 2015

ḣ(x, u) ≥ −h(x). (41)

If h satisfies the inequality constraint (41), one has that, if h(x(t0)) >

0, then h(x(t)) > 0 for all t ≥ 0. Substituting the dynamics of h, (40),
in (41), we obtain the following affine constraint on the control input
u which, if satisfied, ensures that the value of h remains positive, i. e.,
that the state x remains in the desired set S:

∂h
∂x

f0(x) +
∂h
∂x

f1(x)u ≥ −h(x). (42)

h is called a Control Barrier Function (CBF) for the system
(28) if there exists a class K function α such that ∀x ∈ Rn

sup
u

{
∂h
∂x

f0(x) +
∂h
∂x

f1(x)u + α(h(x))
}
≥ 0. (43)

optimization-based control of robotic systems 20

Min-norm Controller

For all values of x, the expression in (42) represent a constraint on u
that, if enforced, ensures the forward invariance of the set S. Among
all the values of u that satisfy this affine inequality constraint, we
proceed as for stability-like tasks, and pick the control input which
minimizes its norm. We can do so by solving the following convex
QP:

minimize
u

‖u‖2

subject to
∂h
∂x

f0(x) +
∂h
∂x

f1(x)u + α(h(x)) ≥ 0.
(44)

The controller u? solution of (44) is the min-norm controller, or the
minimum-energy controller, which renders the set S = {x ∈ Rn : h(x) ≥
0} forward invariant.

Remark 3 If the system model is purely kinematic, i. e. no dynamic effects
like inertia and centrifugal forces are considered (as in the case of kinematic
models of manipulators, (2), and mobile robots, (4)), then the solution to
(44) is simply u? = 0. This corresponds to the fact that, if x ∈ S and we
can instantaneously stop the motion of x by setting u = 0, then to remain
within S, we just need x to not move. And u = 0 achieves that in the
(globally) laziest possible way—by globally minimizing ‖u‖2.

Combining Stability-like and Invariance-like Tasks

Remark 3 highlights the fact that, if we only have invariance-like
tasks, we might get a robot that just does not move, does not do
anything. This condition comes from the fact that the invariance con-
straint (42) is not active. More interesting behaviors, can be achieved
by combining stability-like and invariance-like tasks.

Thanks to the constraint-based formulation, where tasks
are encoded as constraints, we can simply combine multiple tasks by
enforcing multiple constraints, as follows:

minimize
u

‖u‖2

subject to
∂V
∂x

f0(x) +
∂V
∂x

f1(x)u + α(V(x)) ≤ 0

∂h
∂x

f0(x) +
∂h
∂x

f1(x)u + α(h(x)) ≥ 0,

(45)

where the first constraint, constructed using the control Lyapunov
function V, encodes the stability-like task, and the second con-
straint, constructed using the control barrier function h, encodes
the invariance-like task.

optimization-based control of robotic systems 21

Remark 4 Proceeding as in Example 10 to solve (45) might not lead to a
closed-form solution u? due to the multiple constraints.

Remark 5 When we have multiple constraints, we need to worry about
the infeasibility of the optimization problem. If V is a CLF and h is a CBF,
the two constraints alone can be satisfied, by definition of CLF and CBF.
Nevertheless, there might be no u that satisfies both constraints at the same
time.

Remark 6 The optimization problem (45) is still a convex QP and can be
solved in a reliable and efficient way using numerical methods, which will
either return the optimal solution u? or certify that there does not exist any.

Figure 21: Combination of stability-like
and invariance-like tasks. We would
like x to reach the origin depicted as
a blue dot, while avoiding the region
crosshatched in orange.

Example 11 (Example 10 cont.) Assume that, besides driving the state x
of a single integrator robot to 0, we would also like it to avoid a ball-shaped
unsafe region of radius d centered at xo (see Fig. 21). The set S we would
like to be invariant is given by the following expression:

S = {x ∈ Rn : ‖x− xo‖2 ≥ d2}. (46)

If x̄ ∈ S, then the distance between x̄ and xo is larger than d, i. e., x̄ is not in
the unsafe region. A function h whose 0-superlevel set is S is the following:

h : Rn → R : x 7→ ‖x− xo‖2 − d2, (47)

so that if x̄ is such that h(x̄) ≥ 0, then x̄ ∈ S.
Adding the CBF constraint (42) to (35) results in the following QP:

minimize
u

‖u‖2

subject to 2xTu + ‖x‖2 ≤ 0

2(x− xo)
Tu︸ ︷︷ ︸

∂h
∂x f1(x)u

+ ‖x− xo‖2 − d2︸ ︷︷ ︸
α(h(x))

≥ 0.
(48)

The feasibility concerns highlighted in Remark 5 can be mitigated by relax-
ing the stability-like task by introducing a so-called slack variable δ ∈ R in
(48) as follows:

minimize
u,δ

‖u‖2 + κδ2

subject to 2xTu + ‖x‖2 ≤ δ

2(x− xo)
Tu + ‖x− xo‖2 − d2 ≥ 0.

(49)

The slack variable δ relaxes the stability-like constraint. The behavior result-
ing from the implementation of u? solution of (49) consists in trading off
the execution of the stability-like task for the execution of the invariance-like
task, so that avoiding the unsafe region (invariance-like task) has higher
priority with respect to driving x to 0 (stability-like task).

Link to Google Colab for invariance-like tasks of manipulators

and mobile robots.

https://colab.research.google.com/drive/1-hbhT4e_gJHzeOPv_yWBVw6gMnw-kuPR?usp=sharing
https://colab.research.google.com/drive/1-hbhT4e_gJHzeOPv_yWBVw6gMnw-kuPR?usp=sharing

optimization-based control of robotic systems 22

References

Aaron D Ames, Samuel Coogan, Magnus Egerstedt, Gennaro No-
tomista, Koushil Sreenath, and Paulo Tabuada. Control barrier
functions: Theory and applications. In 2019 18th European control
conference (ECC), pages 3420–3431. IEEE, 2019.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cam-
bridge university press, 2004.

Hassan K Khalil. Nonlinear control. Pearson New York, 2015.

Alessandro De Luca and Giuseppe Oriolo. Modelling and control of
nonholonomic mechanical systems. In Kinematics and dynamics of
multi-body systems, pages 277–342. Springer, 1995.

Richard M. Murray, Zexiang Li, and S. Shankar Sastry. A Mathematical
Introduction to Robotic Manipulation. CRC Press, 1994.

Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Ori-
olo. Robotics: modelling, planning and control. Springer Science &
Business Media, 2010.

Eduardo D Sontag. A lyapunov-like characterization of asymptotic
controllability. SIAM journal on control and optimization, 21(3):462–
471, 1983.

Eduardo D Sontag. A ‘universal’ construction of Artstein’s theorem
on nonlinear stabilization. Systems & control letters, 13(2):117–123,
1989.

Mark W. Spong, Seth Hutchinson, and Mathukumalli Vidyasagar.
Robot modeling and control. John Wiley & Sons, 2020.

	Introduction to Robot Control
	Unconstrained, Constrained, and Convex Optimization Problems
	Min-norm controllers – Part I: Stability and Control Lyapunov Functions
	Min-norm controllers – Part II: Invariance and Control Barrier Functions

